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We introduce a family of stochastic processes which are a natural extension of 
Brownian motion to a tensor form. This allows us to solve a Dirichlet problem 
of linear elasticity obeying Lam6's equation, [1 - v ( d -  1)] V2V(x)+ 
V[V. V(x)] = 0. 
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1. I N T R O D U C T I O N  

Since Brown in 1828 I~t first described what has become known as random 
motion, this concept has performed a " random walk" through almost all 
fields of science. After an hesitating step in biology (Brown himself had the 
intuition of having discovered a "primitive molecule" of living matter!), the 
concept of Brownian motion proceeded to enter physics: diffusion (a few of 
Einstein's famous articles of 1905 (21 are devoted to this problem), disper- 
sion, heat transfer, electrostatics (Bachelier~3)), information theory and 
noise (Brillouin, ~4) Shannon(5)), and, more recently, quantum mechanics 
(Nelson (6)) and field theory (e.g., G.Parisi).  Another remarkable success of 
Brownian motion lies in pure and applied mathematics. The connection 
with harmonic analysis initiated by Bachelier ~3) and developed by 
N. Wiener, A. Kolmogorov,  and S. Kakutani  ~7) is still a field of active 
research. Amazingly enough, this somewhat  universal concept seems to 
have avoided mechanics (aside from its recent implication in chaos and 
turbulence). 

However, based on the strong similarities between the Laplace 
equation and the one governing the displacement field of an elastic solid, 
we propose here a random process built over a Brownian walk that allows 
one to solve this vector problem. It  provides a natural generalization of 
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Brownian motion to a tensor form and, to this extent, puts linear elasticity 
on a similar footing as electrostatics. 

Section 2 recalls the basic analogy between Laplace's equation and 
Brownian motion. Section 3 defines the stochastic process. The vector 
nature of elasticity requires the definition of a tensor operator. In Sec- 
tion 3.1, the "the fi'rst step" introduces two basic tensor operators: identity 
and projection along a random vector. These two tensors will propagate 
vector-valued information in the same way as a usual random walk trans- 
ports scalar information. Section 3.2, "the walk," considers the iteration of 
these basic operators and gives the limit processes in Fourier space, thanks 
to the central limit theorem. Section3.3, "the continuous evolution," 
investigates the meaning of these continuous operators through evolution 
equations expressed in terms of infinitesimal generators. Now we have two 
differential equations at our disposal. In order to recover Lam6's equation 
in all its generality (i.e., for any Poisson ratio) we need some "freedom" 
(Section 3.4). We will show that a mere linear combination of the two fun- 
damental processes gives an evolution equation related to Lam6's equation. 
Up to this point, the problem is treated in an infinite space; Section 3.5, 
"boundaries," restricts our random walk with a boundary rule that enables 
us to remain in a compact domain and takes into account the boundary 
condition of a Dirichlet problem (the displacement field at the boundary is 
specified). Finally, Section 3.6, "simplicity," gets rid of the evolution 
operator, unnecessary for our initial purpose, and answers the basic point 
of interest. The solution of any Dirichlet problem of linear elasticity on a 
compact domain can be obtained through a stochastic process. The last 
two points should be considered as suggestive rather than an exact 
mathematical proof. 

The reader interested in the result only may skip Section 3, since the 
results are reported in Section 4. On the other hand, the reader familiar 
with the classic analogy between potential theory and Brownian motion 
may find it helpful, all though Section 3, to consider the scalar reduction of 
any expression involving operator I. 

2. P R E L I M I N A R Y  C O N S I D E R A T I O N S  

In the following the sign | will denote the tensor product and �9 the 
contraction of two tensors. Ikl  2 is the square norm of vector k. 

Let us recall the basic results arising from the analogy between 
Brownian motion and potential theory: Consider the following problem: 

V2V(x) = 0 for all x ~ D  ~ (1) 

V(x) = I ( x )  for all x e #D (2) 
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where D is a compact domain of IR a, ~?D its boundary, and D O its open 
region. If M is a point of D ~ WM a random walk starting from M, and 
P(WM) the first intersection point between WM and ~3D, then the potential 
V(M) in M is given by 

V(M) = < U(P(WM)) > w (3) 

the average (- . .)~v being taken over all random walks W M. Equivalently, 
Eq. (3) can be written as: 

t"  
V(M) = J~ U(x) @(x) (3') 

where @(x) is a measure on ~D, defined as an exit probability at point x 
for a random walk starting at M (Fig. 1). 

The displacement field V(x) of an elastic solid whose Poisson ratio is v 
is a solution of Lam6's equation (4) in a d-dimensional space. The 
equivalent problem to Eqs. (1) and (2) is 

[1 - v ( d -  l)3 V2V(x) + V[V" V(x)] = 0 for all x z D  ~ (4) 

V ( x ) = U ( x )  for all x ~ 0 D  (5) 

with index notation and Einstein implicit summation, (4) reads 

[1 - v(d-- 1)3 V,jj(x) + V/.j~(x) = 0 (4') 

Lam6's equation shares a lot of properties with Laplace's (1): Both are 
linear, elliptic, second-order differential equations. However, the vector 

, ) J  

M 

P 

Fig. 1. The potential V(M) in M is the average of V(P) over P, where P is the first intercept 
of a random walk started in M with the boundary ~S where the potential is fixed. 
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nature of the former prevents us from applying directly classical results 
known for the scalar case (Laplace's and related problems). In this paper 
we propose a stochastic process--a generalization of Brownian mo t ion - -  
which can solve the problem defined by Eqs. (4) and (5) in a way similar to 
Eq. (3) or Eq. (3'). The relation corresponding to Eq. (3') is then 

V(M): f~ rtg(X) " U(x) d#'(x) (5') 

//M(X) is a second-order tensor, and d#'(x) a measure on c3D. 

3. C O N S T R U C T I O N  

One can consider the Brownian motion as the limit of a series of ran- 
dom steps of length r uniformly distributed in space. The limit to consider 
is the following: the number of steps n tends to infinity, the length r tends 
to 0, while the combination nr 2 has a finite limit called t (usually a time 
parameter). In a parallel way, we will define now a stochastic process that 
constructs a tensor during its progression. 

3.1. The First S tep  

Let e be a random unit vector of R d, whose probability density is 
uniform on the surface of a unit sphere. We consider two second-order 
tensors: the identity I and the projection operator along e : e |  Using 
index notations, we can write 

I 0 = 6~ (Kronecker symbol) (6) 

(e |  = eiej (7) 

Let us call P ( e ) = d ( e |  where d is the space dimensionality and is 
introduced here for normalization purpose. These two tensors are naturally 
associated with two operators I, and Pr, which transform any vector field 
A(x) in the following way: 

(IrA)(x) = ( l (e)"  A(x + r e ) ) e  = (A(x  + r e ) ) e  (8) 

(P rA) (x )=  ( P ( e ) ' A ( x + r e ) ) e = d ( [ e ' A ( x + r e ) ] ' e ) e  (9) 

= d(Aj(x + re)"  ej- e i )  e (9') 

The symbol ( - . - ) e  means that we have considered averages over the 
random vector e. Thus, (IrA)(x) represents the average of the vectors A(y) 
for all y sitting on a sphere of radius r and center x. The term (PrA)(x) is 
equal to the average of the projection of A(y) onto the direction ( y -  x) for 
all y on the same sphere (see Fig. 2). 
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A B 
Fig. 2. The operators I and P applied to a vector field A(x) give the following result: (A) 
(IrA)(x) is the average of A(y) where y lies on a sphere of radius r centered in x. (B) (PrA)(x) 
is the average of the projection of A(y) on the direction ( y - x )  (up to a numerical factor d). 

We have a normal izat ion proper ty  for I r and Pr 

< l ) e = l  (10) 

< P ( e ) ) e =  I (11) 

(The numerical  factor d in the definition of P had been int roduced for that 
purpose.)  If A(x)  is a constant  field A, then 

( I r A ) = A  (12) 

( P r A ) = A  (13) 

In fact, we have a stronger property:  For  every vector field T(x)  that is 
a sum of a constant  vector and a ro ta t ion tensor applied on x, we have 

( I ,T) (x)  = T(x)  (14) 

(P ,T) (x )  = T(x)  (15) 

The proof  of such an invariance is s t raightforward if, for any given 
point  x, we decompose  T(y)  into a translat ion part  T(x) and a rota t ion 
Rx(y) a round  x; then 

and symmetry  gives 

T ( y ) = T ( x )  + R ~ ( y )  (16) 

(I ,Rx)(x)  = o (17) 

(P ,Rx) (x )  : 0 (18) 
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The properties (12), (13) and (17), (18), together with the decom- 
position, prove the results. We will use this invariance for our purpose: 
Such a vector field T(x) represents the strain-free displacement field of a 
rigid. Any such field will satisfy Eq. (4) [in the same way, any constant 
potential satisfies Eq. (1)]. Some elementary algebra gives the first 
"moments" of the operators I r and Pr, through the average of the following 
tensors: 

[(l(e)@e>e]0-k = (~)ijek>e=O (19) 

[ (P(e )  | e ) e ]  0k = d(e,eje~)e = 0 (20) 

[ ( l (e)  | e | e )e l  ijkl = (6ijekel)e = ((fj)kl)/d (21) 

[(P(e)|174 2 ) (22) 

3.2. The  W a l k  

As in the case of a Brownian walk, we will iterate elementary steps and 
consider the operators 17 and PT. Let el,  e2,..., e, be n independent vectors, 

In(el ..... en) = I (23) 

P"(el,..., en)= P(e,)- P(e2) . . . . .  P(e,,) 

= d"(el" e2)(e2 �9 e3) �9 �9 �9 (e,,_ l �9 e,,)(e, | e,,) (24) 

The tensor part of the expression (24) takes into account only the first 
and last steps. The scalar factor includes the whole history of the walk 
through the scalar product of all successive pairs of neighboring steps. 
However, our process is still Markovian: the conditional law of p ,+ l  
knowing the whole history pl, p2 ..... W is the same as knowing only the 
last step W. The operators Ir" and Pr ~ act on a vector field A(x) according to 

( l~A)(x)= ( A ( x + r e  I + r e 2 +  ... +re,))(e) (25) 

( P T A ) ( x ) = ( P n ( e l , - - . , e n ) ' A ( x + r e l + r e 2 + ' " + r e n ) ) ( e l  (26) 

In order to analyze the properties of PT, it is useful to evaluate the 
spatial Fourier transform of [r, Pr, and A(x). Let us define 

_Pr(k) < (P(e)  e x p ( - i k "  r e ) ) e  (27) 

If _A(k) is the Fourier transform of A(x) 

_A(k) = f e x p ( - i k ,  x) A(x) dx 
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then Eq. (9) reads 

(PrA)(k) = _P~(k) �9 _A(k) (28) 

Our calculation (19)-(22) allows us to expand the tensors I r ( k  ) and 
P~(k): 

L ( k )  = I - r 2 ( I  |  (k @ k)/2 + O(k4r 4) 

= I - r 2 Ikl21/2d+ O(k4r 4) 
(29) 

_Pr(k) = I - -  r 2 ( P ( e )  | e | e )~-" (k | k)/2 + O(k4r 4) 

= I - -  r 2 ( l k 1 2 1  + 2k | k)/2(d + 2) + O(k4r 4) (30) 

We need the nth power of L(k)  and _Pr(k) in the limit of n going to 
infinity, r to 0, and the product nr 2 tending to t. Paralleling the 
demonstration of the central-limit theorem gives us the following limiting 
forms of L~(k) and _P~(k): 

lira/'~'(k) = ! ' ( k )  
(31) 

lim _PT(k)= _W(k) 

where 

! ' (k)  = exp( - t lkl21/2d) = I exp( - t lkl 2/2d) (32) 

_W(k) = exp[ - t(Ikl21 + 2k | k)/2(d + 2)] (33) 

_P'(k) is the Fourier transform of the equivalent to the transition 
probabilities of a usual Brownian walk. 

The tensor nature of I' is no more than an artefact: The process I can 
be decoupled into d independent Brownian walks. We have obtained one of 
our final tools. The operator P'(x) [given in (32) through its Fourier 
transform _P'(k))] is a key for our purpose: we will investigate below the 
meaning of 

(P'A)(x) = f W ( x -  y). A(y) dy (34) 

through its time derivative and finally we will find a way to solve an 
evolution equation related to Lam6's equation in an infinite domain. 

3.3.  C o n t i n u o u s  E v o l u t i o n  

The time derivative t(k) of the transformation A ( x ) ~  (l 'A)(x) in 
Fourier space, after having taken the expectation, is given by 

t(k) = lim [ l ' (k)  - ~ ]/t = Ikl 2~/2d (35) 
t ~ O  
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o r  

_~(x) = (V~)/2d (36) 

Respectively, for A(x)--.  (P 'h)(x) ,  the time derivative _121(k), still after 
expectation, reads 

IJ(k) = lim [_P'(k) - _P~ 
t ~ 0  

= lim [_P'(k) - ~ ]/t 
t ~ 0  

= (Ikl21 + 2k | k ) /2 (d+  2) (37) 
o r  

n ( x )  = (v  2 + 2v | V)/2(d + 2) 

= {V 2 + 2 grad[d iv( . ) ]  }/2(d+ 2) (38) 

Therefore, we have the following result: (l 'A)(x) is a solution of 

c~V(x, t)/Ot = V2V/2d (39) 

V(x, 0) = A(x) (40) 
whereas (PrA)(x) satisfies 

c~V(x, t ) /& = [V2V + 2V. V) ] / 2 (d +  2) (41) 

V(x, 0) = A(x) (42) 

Lam6's squation is more general than the rhs of (39) or (41), hut we 
will recover it through a linear combination of our two processes. 

3.4. F r e e d o m  

The stationary solution of Eqs. (41) and (42) is a solution of Lam6's 
equation (4) if v = 1 / 2 ( d -  1). In order to recover Lam6's equation for any 
physical situation [ - 1  < ~ v ~ l / ( d -  1)], we must consider another 
stochastic process: In fact, a mere linear combination of l t and pt provides 
us with our goal. At each step, let us choose the tensor O = c~l+ ( 1 -  c~)P. 
The c~ and 1 -  c~ could also be considered as probabilities of choosing I or 
P. However, this additional probabilistic element does not provide any 
novel or interesting feature. Therefore, from a practical point of view, we 
prefer to consider the average c~l + ( 1 -  c~)P. Then, 

( Q ( e ) )  = I (43) 

(Q(e)  | e ) = 0 (44) 

(Q(e)  | e | e ) = [c~/d + ( 1 - c~)/d(d + 2)] 6ucSkl 

+(1  -c~)/d(d+2)(6ik6j,+6iz6jk) (45) 
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Following our derivation, we obtain 

Qr(k)=exp{-t/2d(d+2)[(~d+~+l)lkh2+2(1-~)k| (46) 

The corresponding evolution problem for (Q'A)(x) is 

c~V(x, t)/at= [(c~d+ e + 1)V2V + 2(1 -~)V(VV)]/2d(d+2) (47) 

V(x, 0) = A(x) (48) 

Identification of (47) and (4) leads to 

1 - ( d -  1)v = (c~d+ c~ + 1)/2(1 -c~) 

o r  

c~= [1 - 2 ( d -  1 ) v ] / [ d +  3 - 2 ( d -  1)v] (49) 

valid for - 1  ~<v~< 1 / 2 ( d -  1). The remaining cases [i.e., 1 / 2 (d -  1)~<v~< 
1/(d- 1)] will be reached by the choice c~l- (1  - :~)P.  A similar calculation 
gives 

c~= [ 2 v ( d -  1 ) -  1]/[2v(d- 1) + d4- 1] (50) 

Now we have an evolution process that leads to the solution of Lam6's 
equation in the limit of infinite time. We will now suggest how one can 
incorporate the boundaries of a finite domain in our present formulation. 

3.5. And Boundaries 

In this section and the following we present (rather than prove) two 
additional tools that enables us to deal with realistic problems. The way we 
described our processes, I, P, or Cl is well defined in the case of an infinite 
domain. If we deal with a finite domain D, we need new rules. Suppose we 
stop whenever our walk encounters the boundary ~?D; then, for any point x 
lying within D ~ we may consider a sphere B centered around x and of 
radius e that is within D ~ Inside B, the process is not altered by our boun- 
dary rule, so that Eqs. (39), (41), and (47) still hold. But for points y on 
aD, V ( y , t ) = V ( y ,  0 )=A(y ) .  Finally, we suggest that the stochastic 
processes considered at the beginning of this paper, complemented by this 
straightforward rule, will solve the following problem: 

OV(x,t)/t?t=[1-v(d-1)]V2V(x)+V[V.V(x)] forall  x e D  ~ (51) 

V(x, t) = A(x) for all x e 0D (52) 

V(x, 0) = A(x) for all x s D  (53) 

822/48/1-2-14 
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Now we know how to solve Eqs. (4) and (5): 

1. We construct an initial field A(x) in D so that A(x)[oo=U(x ), 
A(x) being arbitrary inside D ~ 

2. We consider the operator Q' (the Poisson ratio v is given). 

3. We apply it on A(x) and consider the limit (Q~ 

This field is a solution of Eqs. (4) and (5). 

3.6. S impl ic i ty  

However, the first point is rather awkward. It introduces an arbitrary 
initial field [A(x) in D~ which should not affect the final result, since we 
consider the stationary solution of Eqs. (51) and (53). However, instead of 
considering the whole evolution problem, which gives us too much infor- 
mation, we may use the fact that in the limit of t --* oe, almost all walks will 
have encountered the boundary. The number of remaining "free, walks 
that did not stick to c~D at time t (and so never encountered ~?D up to time 
t) decays exponentially with time in a compact domain D. So let us forget 
about the value assigned to the initial field A(x) inside D ~ If, for each 
walk, we stop as soon as we meet c3D, then we can compute the solution of 
Eqs. (4) and (5) in the whole domain D. We propose that the field 
obtained in this way is the stationary solution of Eq. (51) (see the Appen- 
dix for details). This concludes our initial question: 

To any random walk WM starting in M and reaching c3D for the first 
time in P(WM), we can associate a tensor T(WM) [defined below in Eqs. 
(55) and (56)]. The displacement field V(M) in M will be given by 

V(M) = (1 - (W. ) .  U(P(WM)) ~ ~.,~ (54) 

the average ( . ) ( . . )  being taken over all random walks. This last expression 
is to be compared with Eqs. (3) and (5). 

4. RESULTS 

Let us summarize the detailed discretized procedure we can use to 
solve Eqs. (4) and (5): 

1. For any given point M, let us consider an elementary step of 
length r in an arbitrary direction e 1. A tensor ]-(el) is associated to this 
step: 

T(ei)={[1-2(d-1)v]l+(d+2)/del| (55) 
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if - 1  ~<v~< 1 /2 (d-  1), 

T(el)={[Z(d-l)v-l]l-(d+Z)/de~| (56) 

if 1 /2(d-  1)~<v~< 1/(d- 1). Let us call T :  T(e~). 

2. After another random step rei has been chosen, the tensor T is 
replaced by T" r(ei). This second point is repeated until the end of the walk 
M +  ~ rei crosses the boundary c~D. 

3. If P denotes the intersection point between the walk and 0D, then 
we compute T ' U(P ) .  

4. Now we average T ' U ( P )  over different random walks. 

The resulting vector converges toward the solution of Eqs. (4) and (5) 
as the length of each step r tends to 0. 

5. C O N C L U S I O N  

We have introduced a tensor stochastic process related to linear 
elasticity in order to establish a connection between Brownian motion and 
potential theory. This adds a novel relation between elasticity and elec- 
tricity. Other similarities have already proven to be very useful tools (for 
the application of potential concepts to elasticity and the use of Green's 
functions see, e.g., Boussinesq(8); for a review of analytical results see 
Solomon(9)). 

One very current opening can be found in the field of fracture in 
elastic solids. A very attractive model, initially introduced to describe the 
growth of colloids, has been widely studied recently: diffusion-limited 
aggregation. {1~ A cluster is grown from particles performing random 
walks until they touch and stick to the cluster. The patterns obtained show 
a self-similar structure, which can be characterized by a fractal dimension 
strictly smaller than the Euclidian dimension of the embedding space. Such 
objects are also obtained in other processes, such as invasion front in 
porous media, in dielectric breakdown (Pietronero) (see Ref. 12 for a 
review), and in the development of Saffman-Taylor instabilities in 
hydrodynamics. It is possible to show that an elastic fracture problem is 
related to the dual problem of diffusion-limited aggregation (related means 
that Lam6's equation has to be considered instead of Laplac6's). Thus, our 
stochastic process might be a natural way to handle the problem of the 
structure of a fracture pattern. 

Moreover, although we restrict ourselves to Lam6's equation in the 
framework of linear elasticity, it is worth noting that such an approach can 
be applied to other kinds of linear elliptic differential equations. It may be 
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interesting to develop this aspect, as well as other mathematical points 
(convergence of the stochastic process, well-defined mathematical 
framework, etc.). 

APPENDIX 

Let us consider the resulting field U(x) of the process defined in 
Section 6 with boundary condition U(x) = A(x). Let this field be the initial 
field of the evolution problem defined in the same situation: 

0V(x, t)/~t = [ l  - v(d-  1)] V2V(x) + V[V.  V(x)]  

V(x,  t) = A(x)  

V(x, 0) = U(x} 

for all x e D  ~ (A1) 

for all x ~ 0D (A2) 

for all x ~ D  (A3) 

V(x, t) will be the average over all the walks W(x, y) starting in x at time 
t = 0 (y denotes the end of the walk at time t) of the tensor Q'(W(x, y)) 
applied to V(y, 0)=U(y).  But U(y) is the average over all the walks 
W(y, z) (starting in y and ending on the boundary z) of the tensor 
O(W(y, z)) applied to A(z). So 

V(x, t )=  (O'(W(x, y)). (O(W(y, z))~. A(z)) (a4) 

= (O(W(x, z))-A(z)) (a5) 

thanks to the facts that the two pieces of walk W(x, y) and W(y, z) connec- 
ted one to the other reproduce a random walk from x to z with the same 
statistics when integrated over all y, and that the contraction of the two 
tensors O gives the equivalent O for the connected walk. So we recover in 
(A5) the property that V(x, t), being the stationary solution of Eq. (51-53), 
is the solution of Eq. (4, 5). This appendix should be considered as 
suggestive rather than a rigorous proof. 
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